Stimulation of Heavy Metal Adsorption Process by Using a Strong Magnetic Field
نویسندگان
چکیده
The adsorption process is one of the most important techniques of water and wastewater treatment technology. Therefore, there are many methods allowing to improve the effectiveness of these processes based mainly on the chemical modification of adsorbents. However, they are always associated with the necessity of introducing an additional wastes or sewage to the environment. That is why a purpose of the presented was to investigate an innovative and noninvasive adsorption supporting method based on the using of a static magnetic field. The results showed that in the adsorption process of equimolar copper, nickel, and cadmium mixture, a presence of the magnetic field may increase the effectiveness of the process, with respect to copper by more than 40% and a summary molar removal was increased about 11%. However, the effectiveness of the analyzed modification depends largely on the heavy metal equilibrium concentration, and when it increases, a beneficial effect of magnetic field significantly decreases. Nevertheless, due to the fact that heavy metal adsorption processes are very important part of environmental engineering technologies, it can be assumed that further work on magnetic modification of these processes can allow for a significant improvement of many water and wastewater purification plants. Graphical Abstract.
منابع مشابه
Heavy metals removal from wastewater by using different kinds of magnetite nanoadsorbents: effects of different organic and inorganic coatings on the removal of copper and lead ions
Co-precipitation procedure was applied in order to obtain different kinds of magnetic nanoadsobents for the removal of Pb(II) and Cu(II) toxic metal ions from wastewater samples. Prepared nanoadsorbents were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometer (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The average sizes of t...
متن کاملRemoval of Cd (II) in Water Samples Using Modified Magnetic Iron Oxide Nanoparticle
Background: Heavy metals, even at low concentrations, are harmful to human health and environment. Cadmium as a heavy metal is highly toxic and can cause serious threat to living organisms. This research was designed to evaluate the adsorption potential of modified magnetic iron nanoparticles by 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol ligand for the removal of cadmium ions from water solu...
متن کاملApplication of magnetized Sawdust Cross-linked by polyethyleniminefor removal Zn2+ from aqueous solution
The need to elimination heavy metal from aqueous solutions cannot be over emphasized.Very studies have investigated the removal heavy metal from water. In this study a new magnetic nanocomposite of PEI on magnetized Sawdust (SD/MNP/PEI) was prepared. Investigations were conducted to study the adsorption behavior of heavy metal Zn (II) on the SD/MNP/PEI nanocomposite in aqueous medium by varying...
متن کاملTreatment of small scale gold mining wastewater using pilot-scale sedimentation and Cocopeat filter bed system
The use of amalgamation process to recover gold from mined ores by the small-scale gold miners in the Philippines and other developing countries produces and dispose of untreated wastewater to the receiving water bodies. In this study, a field-scale filter bed system was constructed to treat heavy metal metal-laden wastewater collected from small-scale gold mining site in Paracale, Camarines No...
متن کاملA New and Efficient Method for the Adsorption and Separation of Arsenic Metal Ion from Mining Waste Waters of Zarshouran Gold Mine by Magnetic Solid-Phase Extraction with Modified Magnetic Nanoparticles
Widespread arsenic contamination of mining wastewater of Zarshouran (West Azerbaijan province) has led to a massive epidemic of arsenic poisoning in the whole of surrounding areas. It is estimated that approximately all agriculture fields are being irrigated with the water that its arsenic concentrations elevated above the World Health Organization’s standard of 10 parts per billion. A novel ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 229 شماره
صفحات -
تاریخ انتشار 2018